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Abstract

The mechanical interaction between an elliptically shaped magma chamber and a fault subject to transtension is investigated with particular
reference to the Coso geothermal field. The geologic setting of the Coso field is interpreted as a releasing bend step-over structure formed by the
Airport Lake and Owens Valley dextral strike-slip fault system. The role of the Coso volcano-magmatic center in the development of the ‘‘over-
step’’ structure is examined by treating the magma chamber as a liquid inclusion in a viscoelastic crust containing a fault (Airport Lake). The
problem is numerically solved using a 2D viscoelastic finite element model with thermally activated viscosity to account for thermal weakening
of the rock. The temperature distribution around the magma body is calculated based on a 3D steady-state approach and using the mesh-less
numerical method. The fault is modeled as a frictionless contact. The simulated distributions of stress and strain around the inclusion display
a rotation caused by the shearing component of the applied transtension. The results indicate that the fault tends to overstep the chamber in
a geometric pattern similar to a step-over. There is good correspondence between the computed distributions of the maximum shear stress in
the vicinity of the magma chamber and the map of earthquake epicenters at a depth of 7e10 km in Coso.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Large rheological inhomogeneities (on the continental, re-
gional and local scales) can have a significant impact on the
stress distribution in the crust. Magma bodies in the crust
can be viewed as inclusions that interact with the tectonic de-
formation leading to stress/strain concentrations and large
stress gradients and rotations.

Analogue modeling confirms such coupling to be important
in rift zones, where the resulting strain localization forms a gra-
ben above the magma chamber causing further magma em-
placement and regulating the geologic structure in the
extensional environment (Corti et al., 2003). There are
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geologic arguments supporting close association between
shear zones and granite plutons (Weinberg et al., 2004).

This paper examines the interaction between a magma body
and a fault in transtension, focusing on the impact of the
chamber on the behavior of a strike-slip fault. The occurrence
of a fault-magma chamber system is related to circumstances
dictated by the large scale processes in the mantle which often
place volcanic centers on the propagation path of major faults.
The Coso geothermal field (SE California) represents such
a situation. The current deformation in Coso is well studied
by modern geodetic methods (GPS and InSAR). High seismic
activity around Coso Range is suggestive of its internal struc-
ture. Using this data, Unruh et al. (2001) have estimated the
position of a magma body and the orientation and magnitude
of the stresses in the Coso area. Herein a numerical model is
used to study the fault/magma chamber interaction to provide
additional insights regarding the dynamics of the Coso geo-
thermal field and its interpretation.

mailto:ahmad.ghassemi@pe.tamu.edu
http://www.elsevier.com/locate/jsg


1972 A.G. Simakin, A. Ghassemi / Journal of Structural Geology 29 (2007) 1971e1983
1.1. The geological setting and seismicity of the
Coso volcano-magmatic center

The Coso geothermal field is hosted by a magmatic center
that had been active since Pliocene until historical time. The
last rhyolite domes (Sugar Loaf Mt. and others) are dated
ca. 39,000 yrs (Manley and Bacon, 2000). The most recent
volcanic activity at Red Hill (North of the Coso Range) is
dated at about 10,000 yrs. There are signs that geothermal ac-
tivity has recently increased; the modern geothermal system
reflects renewed magmatic activity beneath the Coso dome
field as indicated by temperatures that exceed 325 �C, and
high 3He/4He ratios (Welhan et al., 1988).

Broadly speaking, the Coso Range is located between the
Sierra-Nevada microplate and the Basin and Range exten-
sional zone (see Fig. 1). The tectonic setting is determined
by the interaction between the western margin of North Amer-
ica plate and the relatively rigid Pacific plate, so that shear is
distributed in a system of strike-slip faults in a zone that
extends hundreds of kilometers eastward (Miller et al.,
2001). The Owens Valley, with Coso Range at its southern
end, is one of the large structural basins north of the Garlock
fault, where dextral shear strains are concentrated. The azi-
muth of the cumulative relative motion lies counterclockwise
from the strike of the local faults resulting in a transtensional
environment.

More specifically, InSAR observations (Peltzer et al., 2001)
have pointed out that the Garlock (left lateralesinistral) and
BlackwatereLittle Lake (dextral) faults are intersecting conju-
gate strike-slip faults. The quadruple junction that they form is
kinematically unstable and may generate an oscillatory sur-
face-velocity pattern in which faults would localize shear
strain one at a time. InSAR observations suggest that strain
is accumulated along the BlackwatereLittle Lake fault system
with the Garlock fault presently inactive. These faults intersect
in the direction of the Owens valleyeAirport Lake pair.

Seismic data have provided insight into the deep structure
of the Coso area; Hauksson and Unruh (2003) inverted P
Fig. 1. A schematic geologic map of the Coso area. Red lines are contours of the heat flux from Combs (1980) (values: 3, 5, 10, 15 HFU). Yellow lines depict the

positions of faults (from Unruh et al., 2003). Blue diamonds denote rhyolitic vents younger than 0.3 Ma; red squares denote basaltic vents younger than 0.3 Ma

(from Wicks et al., 2001). The general position of the Coso geothermal area in the East California Shear Zone (ECSZ) is indicated by the red rectangle in the inset

(modified by the permission of American Geophysical Union). 1 HFU¼ 41.87 mW/m2.
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and SeP arrival times from 11,500 earthquakes to determine
the 3D Vp and Vp/Vs velocity structures to depths of 20 km.
They found a low Vp/Vs zone at a depth of 6e9 km under
the geothermal field capped by a cloud of earthquake epicen-
ters. This structure might be interpreted as a partially solidified
magma that provides a large heat flux that drives the surface
geothermal activity. The presence of a high fraction of fluid
is plausible in view of low Vp/Vs (Patane et al., 2006). Heating
of silicic magma with fresh basaltic influx is necessarily
accompanied by basalt crystallization and release of CO2e
H2O and thus, possible fluid accumulation. Alternatively, rel-
atively a large fluid fraction could be due simply to magmatic
mash solidification with fluid exsolution and accumulation.

Unruh et al. (2001) used a new seismic imaging method and
2D acoustic velocity tomograms to determine the detailed
structure of the geothermal area and its surroundings. They
found the trace of Coso Wash fault bounds the eastern margin
of the geothermal field. Some SE dipping structures (probably
active faults) are also detected. All faults tend to flatten as they
terminate at a depth of about 4 km. This is thought to corre-
spond to a decollement at the brittleeductile transition depth.
Also, a strong reflector has been found at a depth of 6 km that
might represent the top of the magma chamber or a deep frac-
tured geothermal reservoir.

Feng and Lees (1998) performed focal mechanism and
stress analysis of the microseismisity in Coso. They detected
that the major principal stress, S1, rotates from horizontal to
almost vertical in a zone around the geothermal production
area. The field has a fast subsidence rate which might have
a poroelastic nature related to steam production and rapid
cooling of the reservoir that would theoretically produce a uni-
form plane extension (constricted contraction), and rotate the
s1-direction.

Altogether the data cited suggest the magmatoetectonic in-
teraction to be significant in deformation and geothermal ac-
tivity of the Coso area, and we illustrate certain mechanical
aspects of this coupling herein. Using numerical simulations,
the interactions between the magma chamber and a fault are
examined in relation to the fundamental features observed in
Coso. In order to facilitate the analysis of the problem, we first
use the analytical solution to the simple model of a 2D circular
inclusion in a viscoelastic matrix to find the influence of the
magma chamber on the stress and displacement distributions
in the crust. The stress distribution for the more realistic ellip-
tical geometry which is generally used to model magma cham-
bers is topologically similar to the circular one.

2. Analytic solutions for weak inclusions in a
deforming solid

2.1. Circular hole in an elastic material

Influx of fresh magma or fluid release can over-pressurized
a magma chamber and result in surface uplift. On the other hand,
under pressure due to cooling-induced contraction, crystallization
and escape of the released fluid cause subsidence above the under-
pressurized chamber. The case of an under-pressurized magma
chamber (pressure lower than mean stress in the host rock) in an
elastic crust subjected to tension can be viewed and treated as
a hole in an elastic infinite plate. The solution to this problem
can be found in terms of complex potentials using Muskhelishvili’s
method of Complex Variables theory (see e.g., in Savin, 1970). The
governing equations of the problem are the mechanical equations
of equilibrium (tension is considered positive):

vsxx

vx
þ vsxy

vy
¼ 0;

vsyy

vy
þ vsyx

vx
¼ 0 ð1Þ

and the stress compatibility condition (obtained using the
stressestrain relationship):

�
v2

vx2
þ v2

vy2

��
sxx þ syy

�
¼ 0 ð2Þ

The above equations result in the biharmonic equation in
terms of the Airy’s stress function, U(x, y):

v4U

vx4
þ 2

v4U

vx2vy2
þ v4U

vy4
¼ 0 ð3Þ

Then, the stresses are written in terms of the derivates of
U(x, y) as:

sxx ¼ v2U=vy2; sxy ¼�v2U=vx vy; syy ¼ v2U=vx2 ð4Þ

The stress function, U(x, y), can be expressed in terms of
two analytical functions f(z) and c(z) as:

Uðx; yÞ ¼ ReðzfðzÞ þ cðzÞÞ ð5Þ
The functions f(z) and c(z) are chosen to satisfy the prob-

lem boundary conditions. The stresses and displacements (ux,
uy) are expressed as follows:

�
sxx þ syy

��
2¼ 2 Reðf0ðzÞÞ�

syy� sxx

��
2þ isxy ¼ zf00ðzÞ þ c0ðzÞ

ux þ iuy ¼
ð3� 4nÞfðzÞ � Zf0ðzÞ �cðzÞ

2m

ð6Þ

where n is the Poisson’s ratio. The complex potentials for a cir-
cular hole of radius rc in a compressible elastic solid (plane
strain) subjected to uniaxial tension (sxx¼ p) can be found
in Savin (1970) for the case when the hole boundary is stress
free (empty hole):

fðzÞ ¼ prc

4

�
z

rc

þ 2rc

z

�

c0ðzÞ ¼ �prc

4

�
z

rc

þ rc

z
�
�rc

z

�2
� ð7Þ

These functions yield simple closed-form expressions for
the stress components in the polar coordinates (r, q), where
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r is the radial distance and q is the angle measured counter-
clockwise from the x-axis:

srr ¼
p

2

	�
1� r2

�
þ
�
1� 4r2þ 3r4

�
cos2q



sqq ¼

p

2

	�
1þ r2

�
�
�
1þ 3r4

�
cos2q



tqr ¼

p

2

�
1þ 2r2� 3r4

�
sin2q

ð8Þ

where r¼ rc/r. As shown in Fig. 2, the differential stress dis-
tribution computed using Eq. (8) has a butterfly pattern, with
two symmetry axes and zones of shear stress minima that
are orientated parallel to the applied extension direction.

2.2. Incompressible medium, simple and pure shear

The viscous limit can be used to calculate the long-term
differential stress distribution for a Maxwell material. For-
mally, the constitutive equations for an incompressible viscous
matrix are the same (by substituting strain rate for strain) as
those for an incompressible elastic body. For an incompress-
ible viscous matrix: sþ PI ¼ 2hD, where D is rate of strain
tensor Dij ¼ 1=2ððvui=vxjÞ þ ðvuj=vxiÞÞ. For an incompressible
elastic body: sþ PI ¼ 2me which follows from the general
equation s� lIekk ¼ 2Geij with n¼ 0.5, where l and m are
Lame parameters. As a result therefore, when n¼ 0.5 (incom-
pressible elastic solid) Savin’s solution (Eq. (6)) describes the
problem of a hole in an incompressible viscous matrix subjected
to extension. Muskhelishvili’s method can be used to treat the
problem of incompressible liquid in a hole which approximates
a filled magma chamber. It should be noted that here the magma
pressure is defined by mechanics of deformation and not by any
influx of fresh magma or other physical processes.

For a general shear loading, the complex potentials for the
problem of an incompressible viscous inclusion in an incom-
pressible viscous matrix are (Schmid and Podladchikov,
2003):

fðzÞ¼� i

2
hm _gz�

�
i _gþ2_3

�
Ar2

c z�1

cðzÞ¼
�
i _g�2_3

�
hmz�

�
i _g�2_3

�
Ar4

c z�3; A¼hmðhc�hmÞ
hcþhm

ð9Þ

where hm is the matrix viscosity and hc is inclusion viscosity,
_g and _3 are simple and pure shear rates, respectively. We con-
sider the case of a weak inclusion, i.e., when the matrix viscos-
ity is much greater than the viscosity of the inclusion hm[hc.
This is a reasonable assumption as the viscosity of melt is in-
deed of the order 105e1010 Pa s which is much less than the
viscosity of the surrounding rocks (1016e1022 Pa s). In this
case, A¼�hm and the velocity field does not depend on the
rheology of the system. After substituting Eq. (8) into Eq.
(5), the expressions for the stress components, flow velocities
and principal stresses can be derived. For example, the mean
stress for simple shear (at r> rc and 0< q< 2p, r ¼ r=rc) is:
P¼ 4 _ghmsin2q

r2
ð10Þ

And the flow rates are:

Vy ¼�
_grccosq

2

�
4cos2q

�
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� 1
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þ 3
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� 4

r

�
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�
4cos2q

�
1

r
� 1

r3

�
þ 1

r3
þ 2r

�
ð11Þ

(S1� S2) can be expressed as a function of 4q, implying
a periodicity of p/2, and a cross pattern:

S1� S2 ¼
2 _ghm

r4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 2r 2Þ2þr4ðr4þ cos4qð4r 2� 6ÞÞ

q
ð12Þ

The distribution of flow lines indicates strain localization,
and stress concentration around the inclusion. As can be
seen in the Fig. 2, there are four (S1� S2) maxima located
on the boundary of the inclusion with magnitudes twice that
of the far field value. The zones of high (S1� S2) concentra-
tion extend into the matrix as illustrated by the four narrow ra-
dial zones. Four shear stress maxima are located inside these
strips. The largest value of each strip (1.33 times the value
at infinity) occur a distance equal to 0.73 times the radius of
the inclusion away from the boundary.

The above solution corresponds to the case of simple shear.
The results of simple and pure shear loadings are the same for
incompressible materials in the sense that in both cases the nor-
malized principal strains are (�1,�1) with a zero trace. In other
words, the displacement field for one can be used to obtain the
strain rate tensor of the other by rotating the coordinate system.
Specifically, the deviatoric part of the strain rate tensor for the
case of pure shear can be transformed into simple shear by ro-
tating the coordinate system through p/4. It follows that the
cross formed by the lines connecting the points of maximum
shear stress in pure shear ( _g ¼ 0, or axial tension or compres-
sion), is rotated by p/4 relative to its position for simple shear,
and becomes diagonal. For mixed shear loading, the cross for
the maximum shear around the inclusion will be in an interme-
diate position between the ones for simple and pure shear cases.

Spure ¼
����1 0

0 �1

����; Ssimple ¼
����0 1

1 0

����;
Ssimple ¼ R$Spure$R�1

��
q¼p=4

; R¼
���� cosq sinq

�sinq cosq

����
As shown in Fig. 2, the cross pattern is modified into a butter-

fly pattern with a pair of maximum shear zones merging to form
‘‘wings’’ for the case of a hole in a compressible elastic mate-
rial. This pattern has two axes of symmetry with zones of shear
stress minima orientated parallel to the extension direction.

The conclusions of above fundamental analysis can be
summarized as follows:

(i) An under-pressurized chamber (Pmagma� Plithostatic< 0)
that develops due to internal processes such as
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Fig. 2. Cross and butterfly patterns corresponding to distributions of (S1� S2) around an incompressible liquid inclusion in infinite space in simple shear, and a hole

in an infinite plate subjected to pure shear, respectively (numbers are values of stress, normalized by the deviatoric stress and sxx at infinity for each case,

respectively).
contraction and fluid loss, or cavity volume enlarge-
ment caused by deformation, behaves like an empty
hole and results in a ‘‘butterfly’’ (S1� S2) pattern.

(ii) An over-pressurized chamber (Pmagma� Plithostatic� 0)
in shear results in a cross-like (S1� S2) pattern; same
as that observed in the uncompressible limit.

Additional factors such as the influence of the complex
rheologies and boundary conditions on the solution deserve a nu-
merical study. We perform two series of numerical experiments.
In the first series the general situation of an elliptical liquid in-
clusion in a viscoelastic plate subject to transtension is simu-
lated. The results show that the pattern of the maximum shear
stress distribution transitions from the cross-like pattern to
a more complex distribution in the course of deformation, and
the liquid pressure drops. In the second series of experiments
we include kinematics and the effect of temperature on the
rock rheology. The simulations are performed by considering
a horizontal cross-section at the mid-intrusion level in the
Coso geothermal field.

3. Numerical experiments

3.1. Equations and numerical approach

The equations governing the mechanics of the problem in-
clude the constitutive equations for the Maxwell solids plus
the ‘‘equation of state’’ for the magma (reduced to compress-
ibility for simplicity), and mechanical equilibrium without the
gravity term. The equations are solved using the FEM with bi-
linear elements (Simakin and Ghassemi, 2005) in an unstruc-
tured grid that is refined near the chamber boundary and at the
fault tip. The fault is viewed as a frictionless contact surface
with the non-penetration condition imposed by the penalty
method (Carstensen et al., 1999). No special measure is ap-
plied to describe the appropriate stress singularity at the fault
tip as fault propagation is not modeled.

The previously discussed analytical solutions have been used
to test our FEM code. Comparison of the (S1� S2) values from
analytical and numerical solutions demonstrates that the bound-
aries of the computational domain affect the solution. Compar-
ison of the numerical and analytical values of (S1� S2) on the
chamber boundary indicates a mean difference in the range of
5e15%. This is due to the use of about 1300 bilinear elements
and can be mitigated using other element types or by mesh
refinement, however, bilinear elements are appropriate when
modeling more complex nonlinear systems with viscoelastic
rheology and viscous damage accumulation and healing under
thermal perturbations.

3.2. Rheology: temperature dependence and
structural viscosity

The rocks surrounding the magma chamber are treated as
a Maxwell solid with a temperature dependent viscosity. Ex-
perimental strainestress relations are usually represented as
(Stockhert et al., 1999):

_3¼ H expð �Q=RTÞsn ð13Þ
For typical strain rates of 10�13e10�14 s�1, the apparent

viscosity can be expressed as:

h¼ bexpðQ=nRTÞ; b¼ H�1=n _e�1þ1=n ð14Þ
As an example, we use experimental data and calculate

quartzite viscosities as a function of temperature at a strain
rate of 10�14 s�1. To bracket possible viscosity variations,
we use stiffer (Koch et al., 1989) and softer (Jaoul et al.,
1984) wet quartzite rheologies (viscosity 1: log (H )¼�5.94
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[MPa�n/s], n¼ 1.7, Q¼ 134 [KJ/mol] and viscosity 2:
log (H )¼�2.54, n¼ 1.8, Q¼ 151). At a temperature of
T¼ 750 �C (close to the eutectic point, i.e., where granites be-
gin to melt at PH2O¼ 1 kbar) a viscosity of 8.3� 1017 Pa s is
considered ‘‘weak’’, while a value of 8.3� 1018 Pa s is stiff.

As follows from Eq. (14), viscosity is the power exponent
of the strain rate with coefficients that depend on texture.
When modeling strain localization, it is possible to take into
account the transient nature of the evolution of texture in re-
sponse to the applied strain rate. This can be done using a dy-
namic equation for the scalar compliance, C:

dC

dt
¼ Bf

��� _e����AC; C¼ 1

h
ð15Þ

where j _ej is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_eij _eij=2

p
. Then, the power law viscosity arises as

the asymptote of the evolution equation:

hss ¼
B

A

�� _e��ð�1þ1=nÞ
if f
��� _e���¼ �� _e��ð1�1=nÞ ð16Þ

Then, viscosity can be decomposed into temperature and
texture dependent terms: h ¼ h1ðTÞh2ðtÞ. The temperature de-
pendent term equals the viscosity at a given T and standard
strain rate: _e ¼ _e0 ¼ 10�14 s�1; and the structural term,
h2(t), is strain-rate and time dependent in accordance with
Eq. (16). To satisfy Eq. (16) at steady state, coefficients A
and B should satisfy the condition: B=A ¼ _em

0 . The absolute
values of kinetic coefficients (A, B) regulate the rate of the
structural transformation. However, these coefficients are not
experimentally investigated to date and therefore, they are
auxiliary to the constants that reflect the temperature effect.
One might choose the values of A and B such that they yield
a structural factor in the neighborhood of the initial value of
unity. If the initial value of the structural term, h2(0, x, y), is
much lower than A/B, then the material has experienced heal-
ing that is not related to the deformation pattern. As a result
we do not consider dynamic power rheology in the numerical
simulations of the Coso described herein.

3.3. General elliptical liquid inclusion in a viscoelastic
material subjected to transtension

As a first step in considering a geologically more relevant
case, a simplified system consisting of an inclusion in a visco-
elastic media subjected to transtension (isothermal) is consid-
ered. An elliptical inclusion with (a/b)¼ 0.4 is placed in
a narrow elongated strip (to minimize end effects) with its
minor axis parallel to direction of shear; this orientation max-
imizes the effect of rotation. Displacement boundary condi-
tions are applied to the sides of the rectangular domain. The
left side is assigned a constant velocity in the direction of
20� from OX-direction. To simulate the transtensional defor-
mation regime, the displacement rate is assumed to vary line-
arly with the OY-axis (along the right and left sides). The
lower side is fixed, and then a relatively small strain of
1.7% is applied. The melt pressure inside the inclusion is iter-
atively adjusted to the deformation. The net result is that the
initially rectangular domain extends in the vertical direction
and deforms to become a parallelogram. All numerical exper-
iments are carried out with a Deborah number ðDe ¼ h=mtÞ <
0:1, where m is the shear modulus and t is time. For De� 1,
the material behaves as a purely viscous fluid while for
De[1 it is as an elastic solid. At our time scales transient vis-
coelastic behavior is expected.

3.3.1. Scaling
All calculations are performed in non-dimensional form us-

ing scaled values of length, time, and pressure. Choosing
a pressure scale of 350 bar, the Young modulus becomes
35 GPa, the Poisson ratio is taken as n¼ 0.2 and liquid com-
pressibility Kl¼ 45 GPa. The viscosity of the matrix is set to
1019 Pa s, so that the time scale is 2.9� 1010 s or 906 yrs
with a strain rate of 6.0� 10�13 s�1. It should be noted that
the linear scale is arbitrary, so the results can also be used to
describe a weak inclusion at the mega-scale (L¼ 10 km) or
micro-scale (L¼ 1 cm).

For a crustal rock viscosity of 1020 Pa s, these same compu-
tational results would correspond to a time scale of 9060 years
with a strain rate of 6� 10�14 s�1. In the following, we con-
sider the results for a non-dimensional time of zero (i.e., elas-
tic case) and 1.0 (9060 yrs).

As can be seen in Fig. 3, the initial stress distribution qual-
itatively corresponds to the analytical solution of Schmid and
Podladchikov (2003) for a circular incompressible liquid in-
clusion. But, the cross-like pattern of the maximum shear
stress (S1� S2) is now modified due to the elliptic shape of
the inclusion. The initial compressive stress was set to
700 bar to equilibrate the initial melt pressure. The mean com-
pressive stress in the material experiencing relative motion to-
wards the inclusion boundary is higher than the material
behind it. The deformation of the boundary causes the pressure
in the inclusion to drop to zero from its initial non-dimensional
value of 2 (700 bar at scale P0¼ 350 bar). This occurs at
a non-dimensional rate of 3.38 (or 350/906 z 0.4 bars/yr)
for a weak crustal viscosity with a fast strain rate (or equiva-
lently at 0.04 bar/yr for stiff rheology and a slower deforma-
tion rate). Initially, the filled inclusion deforms as in the
solution by Schmid and Podladchikov (2003). Applied exten-
sion causes the magma pressure to drop and eventually the in-
clusion behaves like ‘‘a hole’’ (in fact, there is still liquid
inside but it does not totally fill the void) as in the solution
by Savin (1970). Gradually, the maximum shear deformation
around the under-pressurized inclusion develops a spiral pat-
tern. The minimum structural component of viscosity also
has a spiral distribution with weak zones approximately fol-
lowing the expected shear fracture orientations. In Fig. 3 ar-
rows depict the directions of the principal extensional strain.
The shear stress minimum and the structural viscosity maxi-
mum are located along the extensional direction.

3.3.2. Failure criterion
Shear fracturing is controlled by the value of differential

stress (S1� S2) and the mean effective stress [(S1þ S2)/2],
where S1 and S2 are the major and minor principal stress,
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respectively. For example, according to MohreCoulomb
criterion:

S1� S2

2
þ
�

S1þ S2

2
þPfl

�
sinðfÞ ¼ C cosf

where f is the friction angle, and C is cohesion. In the current
2D formulation that uses horizontal sections, it is not possible
to include gravity load, and the fluid pressure is unknown. This
precludes direct use of this failure criterion. However, it can be
suggested that at low effective stress (high fluid pressure), the
failure distribution will follow a cross or butterfly pattern.

4. Numerical simulations for Coso

In Coso, the magma chamber is located in a zone of trans-
tension or mixed simple and pure shear. The elastic component
of the deformation is important as periodic earthquakes lead to
cycles of stress accumulation and release. Therefore, one
might expect the evolution of the maximum shear stress pat-
tern to fall somewhere between the elastic ‘‘butterfly’’ and
the viscous ‘‘cross’’ regimes. The actual structure of the
Coso field is rather complicated and merits a 3D treatment.
However, for simplicity we reduce the full problem to 2D
and consider a representative horizontal section in transten-
sion. As it is not possible to introduce gravity loading in this
2D representation, only information concerning the shear
stress is considered, and those features that are related to the
horizontal shear strains are captured.

4.1. Calculation of the temperature field

The elevated temperature in the thermal aureole around an
intrusion decreases the viscosity and causes relaxation of the
effective deviatoric stresses, therefore an estimate of the tem-
perature field is necessary. The real thermal history of

Fig. 3. Numerical experiments for deformation of a rectangular domain with

an elliptical inclusion. The velocity vector applied to the top side is inclined

20� from the horizontal (counter-clockwise). The black lines show the princi-

pal strains with the long arrow corresponding to the principal extension direc-

tion. Results of calculations at the initial elastic stage, t¼ 0.005, in (b) and

(c); and at the end of the runs, t¼ 1.0, for (def) with a total strain of

exx¼ 1.67%. Values of the stresses are normalized by P0 (e.g. 350 bar, see Sec-

tion 3.3.1). The time scale depends on the assumed viscosity. (a) Magma pres-

sure variation during numerical simulations, it linearly drops to zero. (b) The

mean stress distribution at the onset of deformation. It is similar to mean stress

distribution around a hole in an infinite elastic plate in simple shear. (c) Dis-

tribution of (S1� S2) at the onset of deformation. It is similar to the cross pat-

tern of the maximum and minimum values around a circular inclusion in

a plate (viscous or elastic). (d) Mean stress at the end of the simulation, the

spiral pattern develops with viscous relaxation and interaction with the walls

of the domain. (e) Distribution of (S1� S2) at the end of deformation. The spi-

ral, ‘‘step over’’-like pattern can be recognized by (S1� S2) values of on the

level of about 0.25, while the maxima of the differential stress are adjacent

to the zones lagging behind the rotating inclusion. (f) The structural viscosity

distribution (log h2) reflects the strain-weakening of rocks, with initial value

h2¼ 10, in a ‘‘step- over’’ pattern (arrows show the principal strain directions

at infinity beyond the influence of the inclusion).
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a magmatic center can be very complex and consists of a se-
quence of basaltic and rhyolitic magma emplacements. Also,
heat due to the decay of radioactive elements, magma crystal-
lization and devolatization contribute to the thermal balance.
In view of these complications, a simplified thermal field is
used in the mechanical modeling for the purpose of the present
work.

In 3D geometry, the temperature field can be characterized
by a quasi steady-state distribution assuming that the heat loss
towards the surface is compensated by input of fresh magma
(in the long term). Using this approach, the temperature distri-
bution for 3D conductive heat transfer (governed by: vT=vt ¼
cTDT where cT is the thermal diffusivity) is obtained using
a mesh-less inverse multi-quadric method (IMQ). This method
(Cheng et al., 2003) consists of using a global approximation
for the temperature, T(x, y, z), that is represented as a sum of
probe functions that cover the entire solution domain (as op-
posed to the FEM where local probe functions have non-
zero values only on the local elements). The probe function
used is:

Tðx; y; zÞ ¼
X

N

ai

ðr� biÞ2þc2
i

where bi¼ (xi, yi, zi) are the coordinates of the collocation
points distributed in the domain where the solution is sought.
The coefficients (ai) are unknown and need be found such that
T(x, y, z) satisfies the required partial differential equation and
boundary conditions. For example at a point R, Laplace’s
equation reads:

DTðx; y; zÞ ¼ D

 X
N

ai

ðr� biÞ2þc2
i

!�����
r¼R

¼ 0

For n terms in the sum, a set of N points, ri, are needed to de-
termine the N coefficients, ai. Each term is applicable in the
whole solution domain, therefore, equations for a collocation
point m contain all N terms resulting in a dense matrix. A mod-
ified version of the meshless method is used in which the vari-
able approximation parameter, c, depends on the collocation
point density. The 3D Laplace equation can be solved using
the finite element, finite difference or boundary element
method, however, the mesh-less approach provides an opportu-
nity to treat geometrically complex problems with relative ease
and computational efficiency. The efficiency of the method is,
however, somewhat reduced due to a dense matrix that results
from the global approximation inherent in the method.

4.2. The simulation domain

The shape and position of the magma chamber in Coso is
not known with certainty. The 3D geometry of the mature
magma chamber under Coso geothermal field can be recon-
structed using the seismic data of Hauksson and Unruh
(2003) who present two vertical sections of Vp/Vs ratio delin-
eating the volume of the low seismic velocities and low Vp/Vs

ratio (see Fig. 4a). These regions can be attributed to three-
phase mash (meltþmineralsþ gas) with an increased fluid
fraction. Wilson et al. (2003) analyzed seismograms from tele-
seismic rays crossing the Coso geothermal area, and conclude
that Vs shows significant drop (from 2.6 km/s to 1.8 km/s) at a
depth around 5 km beneath geothermal center (see Fig. 4b).
They link this transition with a shallow magma chamber. How-
ever, a lower geothermal reservoir that is not connected with the
exploited upper reservoir could be in the roof of a deeper solid-
ifying intrusion. Hager et al. (2003) have analyzed the seismic
and postseismic deformations during the quake of July 17,
2001 (CaliforniaeNevada border region, Coso, Mw¼ 5.2).
They concluded that a dislocation in a uniform elastic half-space
does not explain ‘‘coseismic’’ displacements, and that the
observed viscoelastic relaxation implies a magma chamber or
some process in the geothermal reservoir.

We approximate the magma chamber as an ellipsoid with its
dimensions inferred and estimated from the most comprehen-
sive seismic data and interpretations of Hauksson and Unruh
(2003). The elliptical geometry is inferred from the fact that
the anomaly is smaller in the cross-section AeA0 than in
cross-section BeB0 (Fig. 4a). The magma chamber is approxi-
mated by an ellipsoid with semi-axes lengths of: a¼ 11.5 km,
b¼ 4.7 km, and c¼ 2.5 km. The maximum horizontal axis is
oriented in the direction of N45.6W. The center of the ellipsoid
is assumed to be located at depth of 9 km. Two isothermal sur-
faces of T¼ 520 �C and T¼ 300 �C characterizing the solution
are shown in Fig. 5. Note that the cupola of the increased tem-
perature merges with the regional isotherm below to produce
a diapir-like pattern. Once the 3D temperature field is obtained,
the temperature of each 2D slice is easily calculated for the no-
des of the 2D unstructured finite-element mesh. Mechanical nu-
merical experiments correspond to the central horizontal section
through the ellipsoid using viscosity distributions in accordance
with the chosen rheology and the estimated temperature field.

4.2.1. The magma/fault system in transtension
The kinematics scheme used corresponds to GPS data

(Hager et al., 2003). To model the fault interaction with the in-
clusion, the displacement boundary conditions should be spec-
ified on the boundaries of the computational domain to outline
the moving blocks involved as e.g., in Parsons et al. (2003).
The left side of the block, and the part of the lower side close
to the left corner, represent the Sierra-Nevada block moving at
a constant rate. The right side of the computation domain is
fixed. The discontinuity corresponding to the Airport Lake
fault starts from the lower side; it penetrates the brittle rocks
and reaches the brittleeductile boundary in the cupola above
the intrusion. Its counterpart to the NW, behind the magma
chamber, is intentionally excluded to observe the preferred ori-
entation that results from the interaction with the weak inclu-
sion. Again, as it is not possible to introduce gravity loading in
2D sections, only shear stresses are considered. The displace-
ment boundary conditions applied to the left side and part of
the lower side near the corner, roughly represent the observed
relative motion of the Sierra-Nevada block in NNW direction
(N32W) along the Black-WatereLittle Lake fault as depicted
in Fig. 6.
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Fig. 4. (a) Seismic structure of the Coso field. Vertical sections of Vp/Vs distributions with superimposed earthquakes epicenters. The position of the profiles is

displayed on the map (from Hauksson and Unruh, 2003) (reproduced by permission from U.S. Navy Geothermal Program Office). (b) Teleseismic data from

Wilson et al. (2003). The red ellipse approximately corresponds to the position of the assumed magma chamber; red dashes show the possible position of the

brittleeductile transition boundary (modified by permission of American Geophysical Union).
5. Results

The calculations were performed to model a deformation
history of about 2000e3000 yrs (sufficient time for strains to
accumulate). As shown in Fig. 7, the differential stress distri-
bution (S1� S2) calculated for the initial, mainly elastic, stage
of the deformation at t¼ 300 yrs has a butterfly pattern similar
to that observed in the analytical model of a hole (under-
pressurized magma chamber) in an elastic plate subjected to
extension. Note that the expected symmetry in the pattern of
stress distribution is distorted due to the inclination of the
axis of the ellipse axis relative to the extension direction, the
influence of the boundaries of the computational domain,
and that of viscous relaxation. The similarity between the
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numerically calculated maximum shear stress, and the ob-
served distribution of epicenters (depth7e10 km, from Hauks-
son and Unruh, 2003) in the field can be noted. Large
earthquakes at depth are located around the contour of the as-
sumed magma chamber near the maxima of the calculated
shear stress intensity. The projection of all earthquakes covers
the assumed magma chamber and the zones of maximum
shear, while larger earthquakes occur outside the chamber
boundary. Only one group (in the SW corner) that apparently
has a different origin is located beyond the anticipated zone of
the stress concentration in an area around the magma chamber.
It should also be noted that, that earthquakes shown are for
a limited time interval and one can expect that the distribution
of epicenters over a larger time interval would show a better
fit. The maximum seismicity at Coso Ridgecrest can be caused
by additional factors because a normal fault focal mechanism
for some earthquakes is observed there, and also subsidence
has been detected in this area.

The results using a stiffer crustal rheology (Koch et al.,
1989) better correspond to the observed distribution of deep
epicenters around the assumed magma chamber in Coso. A
weaker rheology with a viscosity of 8.3� 1017 Pa s at
750 �C (Jaoul et al., 1984) causes the relaxation of the effec-
tive stresses in the thermal aureole and practically extends
the chamber boundary to the 400e450 �C isotherm. As a re-
sult, there is ambiguity in the chamber parameters; the actual
volume of the magma or partially crystallized granite with
high exsolved fluid content at a temperature of around
700 �C can be less than the estimate used herein. Probably
the seismic data would correspond to the weak area delineated
by 400e500 �C isotherm.

Fig. 5. The 300 and 520 �C isotherms based on 3D calculation of temperature.

A cupola of increased temperature (close to the brittleeductile transition) is

evident above the magma body. The isotherm merges with the assumed re-

gional isotherm at a depth of about 28 km. Horizontal cross-sections at the

mid-intrusion depth are used for mechanical modeling (T¼ 300 �C and

T¼ 520 �C isotherms indicate the maximum temperature range where

brittleeductile transition is expected to occur).
The maximum compressive principal stress directions are
shown in Fig. 8. There is good agreement between the com-
puted directions and those estimated based on micro-seismicity
(Feng and Lees, 1998), and a reconstruction of the compressive
principal strain directions (Dewey, 2003). The S1 directions de-
termined by Feng and Lees (1998) generally are around N12e
27E and notably deviate from the calculated directions in the
supposed chamber roof. They also found that the S1 direction
in the geothermal field rotates from horizontal to almost vertical
in the vertical plane and attributed this to the very fast subsi-
dence rate that is partially caused by reservoir exploitation
(vapor extraction and cooling, see e.g., Fialko and Simons,
2000). It should be noted that our model results reflect deep
shearing while geophysical measurements are from shallower
depths and are also affected by Coso Wash faults system and
other processes in the geothermal reservoir.

It is noteworthy that the interpretation of the surface subsi-
dence data by Wicks et al. (2001) indicates a dislocation plane
(contraction) that is practically perpendicular to the direction
of the extension above the supposed magma chamber. The ex-
act nature of this plane is not certain; however, its orientation
resembles a normal fault. It might be a zone of strain localiza-
tion that is transforming into a normal fault. Unruh et al.
(2001) also found seismic discontinuities in the roof with sim-
ilar parameters that do not manifest themselves on the surface,
such as Coso-Wash fault. More detailed comparison can be
made using a 3D model based on envisaged factors.

6. Discussion

We have examined the mechanical interaction between an
elliptically shaped magma chamber and a fault subject to
transtension with reference to the Coso geothermal field. How-
ever, the mechanical behavior of such a system is of interest in
other geological problems. For example Milano et al. (2004)
have modeled stress distribution in the Campanian Plain ex-
tension zone (Southern Italy), emphasizing the role of a hydro-
thermally weakened ‘‘inclusion’’ (40� 20 km at a depth of
3 km) in deflecting the principal stress directions and local-
izing the strongest earthquakes. The authors found that the
maximum historical earthquakes in the region occurred in
the areas of maximum shear stress.

The distribution of the maximum shear stress for the case of
a weak inclusion presented herein, and in Milano et al. (2004),
are similar to the d-shaped zones produced by a stiff inclusion
in a shearing viscous matrix (Samanta et al., 2002). Viscous
flow around stiff crystal inclusions has been studied in struc-
tural geology for their precise and proper application in the ki-
nematic analysis of deformed rocks. An inclusion along with
its pair of tails rotates clockwise in dextral shear. Similarly,
it can be expected that a strike-slip dextral fault would tend
to overstep the magmatic domain in a clock-wise fashion fol-
lowing the maximum shear stress trajectory. This can be seen
in Fig. 9, which shows the results of calculation for a longer
time (t¼ 3000 yrs) corresponding to the stage of effective vis-
cous relaxation. This is a plausible scenario in the Coso vol-
cano-magmatic center. The geologic setting of the field is
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Fig. 6. A horizontal section through Coso: (a) INSAR data from Peltzer et al. (2001) are superimposed on the seismicity section (Hauksson and Unruh, 2003) at the

depth 10 km; (b) Boundary conditions used in numerical experiments. Displacements are prescribed on parts of the boundary (inclined arrows). Complimentary

parts are stress free; also shown are the fault (red line) and the projection of the position of the elliptical magma body (t, traction, n is the normal).
commonly interpreted as a releasing bend step-over in a dextral
strike-slip fault system (Monastero, 2002). In this system, the
Airport Lake and Owens Valley Faults are extended along
a nearly straight line, so that it is plausible that the structure
is the result of a fault overstepping the thermally weakened
rocks around the magma body in accordance with the model
presented here. This view is consistent with the existence of
a seismogenic zone above the brittleeductile transition zone
in the crust and the behavior of the faults as they approach it.

The seismogenic zone is thought to exist above the brittlee
ductile transition depth at temperatures below some ‘‘cut-off’’
level. As demonstrated by the large database on California
seismicity (Bonner et al., 2003) and the accurate temperature
depth profile calculations accounting for the observed heat
fluxes, heat generation and conduction, the cut-off temperature
for 99% of seismic events is 450� 50 �C. This is higher than
the frequently referenced temperature of 300� 50 �C for the
brittleeductile transition based on the distinct decrease of per-
meability (Bailey, 1990; Fournier, 1991). The depth where the
temperature reaches 400e500 �C depends on the location, and
is about 15e17 km around Coso. The brittleeductile transition
zone is also detected as a mid-crustal anisotropic converter
with seismic methods (Jones and Phinney, 1998) and is asso-
ciated with major shear zones extending down from the large
normal faults in the region as drawn by Wernicke (1992). A
seismic converter has been observed farther to the north and
east of Coso and appears to underlie a large part of eastern
California (Jones and Phinney, 1998). Due to local heating as-
sociated with the long existing Coso silicic magmatic center,
this rheological divider rises up to depths of about 4e4.5 km
and is absent at greater depths. It is marked by the listric ter-
mination of normal faults in the thermal aureole of the magma
chamber (Unruh et al., 2001; Pullammanappallil et al., 2001).
Similarly, in horizontal sections like those used in our model
a strike-slip fault that propagates in the brittle rocks of the up-
per crust would bypass the viscous cupola around the Coso
magmatic center as described here.

In our simulations, we have used rock viscosities of
h¼ 5.5� 1019 Pa s at T¼ 500 �C for the stiff case, and
h¼ 2.0� 1019 Pa s at T¼ 500 �C for the weak case, based
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Fig. 7. Distribution of the maximum differential stress (S1� S2) accumulated

in a short time interval of 300 yrs. Also shown are the relocated Coso seismic-

ities (blue stars) during 1981e1990 at depths of 7e10 km (Hauksson and Un-

ruh, 2003). The purple line depicts the active Airport Lake fault. Black arrows

show the principal strain directions in zones away from the magma body.

Fig. 8. Trajectories of the major principal stress around the Coso magmatic

center at the initial stage of deformation (as in Fig. 7). The short dashes cor-

respond to data from Feng and Lees (1998). The dashed lines are from our cal-

culations. Thick dashed line depicts the position of the Coso Wash fault, and

the red lines are the trajectories of the maximum strain directions from Dewey

(2003). The small filled ellipse shows the position of Sugar Loaf Mt.
on the studies of Koch et al. (1989), and Jaoul et al. (1984).
These values are higher than those estimated by Newman
et al. (2006) for the thermal aureole of the magma chamber
in the Long-Valley system via interpretation of the real-time
geodetic and geophysical data. A reason for this is that
Newman et al. (2006) interpret the fine structure in the zone
of partially crystallized mash rather than the metamorphic
rocks in the thermal aureole. It is more consistent to consider
viscosity as a function of temperature, as in our study, than to
arbitrary place elliptical or spherical shells of fixed viscosities
around a magma body (Newman et al., 2006). However, both
studies demonstrate that it is essential to account for the low-
ered viscosity of the thermal aureole when modeling the me-
chanical response of a magma chamber, its internal pressure
variations, and its external deformations. Viscosity depends
on many factors such as the presence of fluid, fluid composi-
tion and pressure, as well as rock texture, composition and
strain rate. A poorly constrained rheology for the surrounding
rocks points to uncertainty when solving the inverse problem
of finding the position and size of a magma body.
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